Occupancy distributions in Markov chains via Doeblin's ergodicity coefficient
نویسندگان
چکیده
We state and prove new properties about Doeblin’s ergodicity coefficient for finite Markov chains. We show that this coefficient satisfies a sub-multiplicative type inequality (analogous to the Markov-Dobrushin’s ergodicity coefficient), and provide a novel but elementary proof of Doeblin’s characterization of weak-ergodicity for non-homogeneous chains. Using Doeblin’s coefficient, we illustrate how to approximate a homogeneous but possibly non-stationary Markov chain of duration n by independent and short-lived realizations of an auxiliary chain of duration of order ln(n). This leads to approximations of occupancy distributions in homogeneous chains, which may be particularly useful when exact calculations via one-step methods or transfer matrices are impractical, and when asymptotic approximations may not be yet reliable. Our findings may find applications to pattern problems in Markovian and non-Markovian sequences that are treatable via embedding techniques.
منابع مشابه
Doeblin’s Ergodicity Coefficient: Lower-complexity Approximation of Occupancy Distributions
In this talk, I will extend Doeblin’s ergodicity coefficient (originally defined for finite dimensional stochastic matrices) to kernels of time-homogenous Markov chains over Polish spaces, and show how a strictly positive Doeblin’s coefficient leads to lowto moderatecomplexity approximations of the occupancy distributions of subsets of the state space. Such approximations may be particularly us...
متن کاملPerturbation theory for Markov chains via Wasserstein distance
Perturbation theory for Markov chains addresses the question of how small differences in the transition probabilities of Markov chains are reflected in differences between their distributions. We prove powerful and flexible bounds on the distance of the nth step distributions of two Markov chains when one of them satisfies a Wasserstein ergodicity condition. Our work is motivated by the recent ...
متن کاملOn $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov processes
In the present paper we investigate the $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov processes with general state spaces. We provide a necessary and sufficient condition for such processes to satisfy the $L_1$-weak ergodicity. Moreover, we apply the obtained results to establish $L_1$-weak ergodicity of quadratic stochastic processes.
متن کاملKinetic path summation, multi-sheeted extension of master equation, and evaluation of ergodicity coefficient
We study the master equation with time-dependent coefficients, a linear kinetic equation for the Markov chains or for the monomolecular chemical kinetics. For the solution of this equation a path summation formula is proved. This formula represents the solution as a sum of solutions for simple kinetic schemes (kinetic paths), which are available in explicit analytical form. The relaxation rate ...
متن کاملMixing Times of Plane Random Rhombus Tilings
We address the question of single flip discrete dynamics in sets of two-dimensional random rhombus tilings with fixed polygonal boundaries. Single flips are local rearrangements of tiles which enable to sample the configuration sets of tilings via Markov chains. We determine the convergence rates of these dynamical processes towards the statistical equilibrium distributions and we demonstrate t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1003.2649 شماره
صفحات -
تاریخ انتشار 2010